Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers.
نویسندگان
چکیده
A numerical gradient flow procedure was devised to characterize minimal energy shapes of fusion pores connecting two parallel planar bilayer membranes. Pore energy, composed of splay, tilt, and stretching, was obtained by modeling each bilayer as two monolayers and treating each monolayer of a bilayer membrane as a freely deformable surface described with a mean lipid orientation field. Voids between the two monolayers were prevented by a steric penalty formulation. Pore shapes were assumed to possess both axial and reflectional symmetry. For fixed pore radius and bilayer separation, the gradient flow procedure was applied to initially toroidal pore shapes. Using initially elliptical pore shapes yielded the same final shape. The resulting minimal pore shapes and energies were analyzed as a function of pore dimension and lipid composition. Previous studies either assumed or confined pore shapes, thereby tacitly supplying an unspecified amount of energy to maintain shape. The shapes derived in the present study were outputs of calculations and an externally provided energy was not supplied. Our procedure therefore yielded energy minima significantly lower than those reported in prior studies. The membrane of minimal energy pores bowed outward near the pore lumen, yielding a pore length that exceeded the distance between the two fusing membranes.
منابع مشابه
Influenza hemagglutinin-mediated fusion pores connecting cells to planar membranes: flickering to final expansion
We have studied the fusion between voltage-clamped planar lipid bilayers and influenza virus infected MDCK cells, adhered to one side of the bilayer, using measurements of electrical admittance and fluorescence. The changes in currents in-phase and 90 degrees out-of-phase with respect to the applied sinusoidal voltage were used to monitor the addition of the cell membrane capacitance to that of...
متن کاملDynamics of fusion pores connecting membranes of different tensions.
The energetics underlying the expansion of fusion pores connecting biological or lipid bilayer membranes is elucidated. The energetics necessary to deform membranes as the pore enlarges, in some combination with the action of the fusion proteins, must determine pore growth. The dynamics of pore growth is considered for the case of two homogeneous fusing membranes under different tensions. It is...
متن کاملThe fusion kinetics of influenza hemagglutinin expressing cells to planar bilayer membranes is affected by HA density and host cell surface
Time-resolved admittance measurements were used to follow formation of individual fusion pores connecting influenza virus hemagglutinin (HA)-expressing cells to planar bilayer membranes. By measuring in-phase, out-of-phase, and dc components of currents, pore conductances were resolved with millisecond time resolution. Fusion pores developed in stages, from small pores flickering open and close...
متن کاملBending of bilayers with general initial shapes
Abstract We present a simple discrete formula for the elastic energy of a bilayer. The formula is convenient for rapidly computing equilibrium configurations of actuated bilayers of general initial shapes. We use maps of principal curvatures and minimum-curvature direction fields to analyze configurations. We find good agreement between the computations and an approximate analytical solution fo...
متن کاملFlickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers.
For the act of membrane fusion, there are two competing, mutually exclusive molecular models that differ in the structure of the initial pore, the pathway for ionic continuity between formerly separated volumes. Because biological "fusion pores" can be as small as ionic channels or gap junctions, one model posits a proteinaceous initial fusion pore. Because biological fusion pore conductance va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2013